
Two practical types of account

Address of account

116_004 Ethereum-2.1

 116_004 Ethereum-2.1 Page 1

Account State
In Ethereum, there are two types of accounts: External Owned Accounts (EOA) and
Contract Accounts (CA). An EOA account is the account that you and I would have, that

we can use to send Ether to one another and deploy smart contracts. A contract account
is the account that is created when a smart contract is deployed. Every smart contract
has its own Ethereum account.
The account state contains information about an Ethereum account.
For example, it stores how much Ether an account has and the number of transactions
sent by the account. Each account has an account state.

nonce•
Number of transactions sent from this address (if this is an External Owned Account -
EOA) or the number of contract-creations made by this account (don't worry about
what contract-creations means for now).

•

balance•
Total Ether (in Wei) owned by this account.•
storageRoot•
Hash of the root node of the account storage trie (we’ll see what the account storage
is in a moment).

•

codeHash•
For contract accounts, hash of the EVM code of this account. For EOAs, this will be
empty.

•

Let's take a look into each one of the fields in the account state:

Account state and Account Storage trie
World state trie and Account storage trie

KECCAK-256 hash, which Ethereum
uses.

 116_004 Ethereum-2.1 Page 2

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#externally-owned-accounts-eoas
http://ethdocs.org/en/latest/ether.html
https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use

empty.
•

One important details about the account state is that all fields (except the codeHash)
are mutable. For example, when one account sends some Ether to another, the nonce
will be incremented and the balance will be updated to reflect the new balance.
One of the consequences of the codeHash being immutable is that if you deploy a
contract with a bug, you can't update the same contract. You need to deploy a new
contract (the buggy version will be available forever). This is why it is important to
use Truffle to develop and test your smart contracts and follow the best practices when
working with Solidity.
The Account Storage trie is where the data associated with an account is stored.
This is only relevant for Contract Accounts, as for EOAs the storageRoot is empty and
the codeHash is the hash of an empty string. All smart contract data is persisted in the
account storage trie as a mapping between 32-bytes integers. We won’t discuss in
details how the contract data is persisted in the account state trie. If you really want to
learn about the internals, I suggest reading this post. The hash of an account storage
root node is persisted in the storageRoot field in the account state of the respective
account.

Transactions that transfer value between two EOAs (e.g, change the sender
and receiver account balances)

1.

Transactions that send a message call to a contract (e.g, set a value in the
smart contract by sending a message call that executes a setter method)

2.

Transactions are what makes the state change from the current state to the
next state. In Ethereum, we have three types of transactions:

Ethereum can also be seen as a stack of transactions.
Stack of transactions : Ledger

Two practical types of transaction

 116_004 Ethereum-2.1 Page 3

http://truffleframework.com/
https://consensys.github.io/smart-contract-best-practices/software_engineering/#upgrading-broken-contracts
https://medium.com/coinmonks/a-practical-walkthrough-smart-contract-storage-d3383360ea1b

smart contract by sending a message call that executes a setter method)
2.

Transactions that deploy a contract (therefore, create an account, the contract
account)

3.

(technically, types 1 and 2 are the same... transactions that send message calls
that affect an account state, either EOA or contract accounts. But is it easier to
think about them as three different types)

nonce•
Number of transactions sent by the account that created the transaction.

gasPrice•
Value (in Wei) that will be paid per unit of gas for the computation costs of
executing this transaction.
gasLimit•
Maximum amount of gas to be used while executing this transaction.
to•
If this transaction is transfering Ether, address of the EOA account that will
receive a value transfer.
If this transaction is sending a message to a contract (e.g, calling a method in
the smart contract), this is address of the contract.
If this transactions is creating a contract, this value is always empty.

value•
If this transaction is transfering Ether, amount in Wei that will be transferred to
the recipient account.
If this transaction is sending a message to a contract, amount of Wei payable by
the smart contract receiving the message.
If this transaction is creating a contract, this is the amount of Wei that will be
added to the balance of the created contract.

•

v, r, s•
Values used in the cryptographic signature of the transaction used to determine
the sender of the transaction.
data (only for value transfer and sending a message call to a smart contract)•
Input data of the message call (e.g, imagine you are trying to execute a setter
method in your smart contract, the data field would contain the identifier of the
setter method and the value that should be passed as parameter).
init (only for contract creation)•
The EVM-code utilized for initialization of the contract.

These are the fields of a transaction:

Don't try to grasp all of this at once... Some fields like the data field or the init field
require you to have a deeper understanding of the internals of Ethereum to really
understand what they mean and how to use them. This is not the time to deeply
understand any of these fields.
Not surprisingly, all transactions in a block are stored in a trie. And the root hash of
this trie is stored in the... block header! Let's take a look into the anatomy of an
Ethereum block.

Fields of a transaction

 116_004 Ethereum-2.1 Page 4

https://medium.com/@rsripathi781/6-payable-functions-in-solidity-smartcontract-ethereum-d2535e346dc1
https://medium.com/@hayeah/diving-into-the-ethereum-vm-part-5-the-smart-contract-creation-process-cb7b6133b855

Order of transactions

Transaction order is not guaranteed.

Ordering inner block

 116_004 Ethereum-2.1 Page 5

Miner can determine the order of transactions in a block.

Ordering inter blocks

The order between blocks is determined by a consensus algorithm such as PoW or PoS or PoA.

 116_004 Ethereum-2.1 Page 6

A high level diagram of the Ethereum block

parentHash•
Hash of the block header from the previous block. Each block contains a hash of the
previous block, all the way to the first block in the chain. This is how all the data is
protected against modifications (any modification in a previous block would change the
hash of all blocks after the modified block).
ommersHash•
Hash of the uncle blocks headers part of the block body.
beneficiary•
Ethereum account that will get fees for mining this block.
stateRoot•
Hash of the root node of the world state trie (after all transactions are executed).
transactionsRoot•
Hash of the root node of the transactions trie. This trie contains all transactions in the

Fields in the block header:

Block
The block is divided in two parts, the block header and the block body.
The block header is the blockchain part of Ethereum. This is the structure that contains
the hash of its predecessor block (also known as parent block), building a cryptographically
guaranteed chain.
The block body contains a list of transactions that have been included in this block and a
list of uncle (ommer) blocks headers (if you want to know more about uncle blocks
recommend
this post).

 116_004 Ethereum-2.1 Page 7

https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e
https://github.com/ethereum/wiki/wiki/Design-Rationale#uncle-incentivization

Hash of the root node of the transactions trie. This trie contains all transactions in the
block body.
receiptsRoot•
Every time a transactions is executed, Ethereum generates a transaction receipt that
contains information about the transaction execution. This field is the hash of the root
node of the transactions receipt trie.
logsBloom•
Bloom filter that can be used to find out if logs were generated on transactions in this
block (if you want more details check this Stack Overflow answer). This avoids storing of
logs in the block (saving a lot of space).
Difficulty: PoW mining•
Difficulty level of this block. This is a measure of how hard it was to mine this block (I'm
not diving into the details of how this is calculated in this post).
number•
Number of ancestor blocks. This represents the height of the chain (how many blocks are
in the chain). The genesis block has number zero.
gasLimit•
Each transaction consumes gas. The gas limit specifies the maximum gas that can be
used by the transactions included in the block. It is a way to limit the number of
transactions in a block.
gasUsed•
Sum of the gas cost of each transaction in the block.
timestamp•
Unix timestamp when the block was created. Note that due to the decentralized nature of
Ethereum, we can't trust in this value (specially when implementing smart contracts that
have time related business logic). PoW???
extraData•
Arbitrary byte array that can contain anything. When a miner is creating the block, it can
choose to add anything in this field.
mixHash•
Hash used to verify that a block has been mined properly (if you want to really understand
this, read about the Ethash proof-of-work function).
nonce•
Same as the mixHash, this value is used to verify that a block has been mined properly.

Now that you’ve gotten the 10,000-foot overview of what a blockchain is, let’s dive deeper into the main
components that the Ethereum system is comprised of:

accounts•

state•

gas and fees•

transactions•

blocks•

transaction execution•

Validation --> PoS•

I am referring to the KECCAK-256 hash, which Ethereum uses.

 116_004 Ethereum-2.1 Page 8

https://hackernoon.com/probabilistic-data-structures-bloom-filter-5374112a7832
https://ethereum.stackexchange.com/a/3426/20504
https://github.com/ethereum/wiki/wiki/Ethash
https://ethereum.stackexchange.com/questions/550/which-cryptographic-hash-function-does-ethereum-use

Conclusion

The world state trie contains the mapping between addresses and account states.
The hash of the root node of the world state trie is included in a block (in
the stateRoot field) to represent the current state when that block was created. We only
have one world state trie.

1.

The account storage trie contains the data associated to a smart contract. The hash
of the root node of the Account storage trie is included in the sccount state (in
the storageRoot field). We have one Account storage trie for each account.

2.

The transaction trie contains all the transactions included in a block. The hash of the
root node of the Transaction trie is included in the block header (in
the transactionsRoot field). We have one transaction trie per block.

3.

The transaction receipt trie contains all the transaction receipts for the transactions
included in a block. The hash of the root node of the transaction receipts trie is included
in also included in the block header (in the receiptsRoot field); We have one transaction
receipts trie per block.

4.

Basically, Ethereum has 4 types of tries:

World state: the hard drive of the distributed computer that is Ethereum. It is a mapping
between addresses and account states.

1.

Account state: stores the state of each one of Ethereum's accounts. It also contains the
storageRoot of the account state trie, that contains the storage data for the account.

2.

Transaction: represents a state transition in the system. It can be a funds transfer, a
message call or a contract deployment.

3.

Block: contains the link to the previous block (parentHash) and contains a group of
transactions that, when executed, will yield the new state of the system. It also contains
the stateRoot, the transactionRoot and the receiptsRoot, the hash of the root nodes of
the world state trie, the transaction trie and the transaction receipts trie, respectively.

4.

And the objects that we discussed are:

Till this place

 116_004 Ethereum-2.1 Page 9

Block, transaction, account state objects and Ethereum tries

Global State — Sawtooth v0.8.13 documentation (hyperledger.org)

Global State

One goal of a distributed ledger like Sawtooth, indeed the defining goal, is to
distribute a ledger among participating nodes. The ability to ensure a consistent copy
of data amongst nodes in Byzantine consensus is one of the core strengths of
blockchain technology.

In a distributed system of n processes, where each process has an initial value, Byzantine

consensus is the problem of agreeing on a common value, even though some of the
processes may fail in arbitrary, even malicious, ways.
From <https://www.google.com/search?client=opera&hs=6S&biw=1240&bih=579
&ei=dSkEYNCOD9a73APemJjACw&q=byzantine+consensus+blockchain&oq=Byzantine+consensus&gs_lcp=CgZwc3ktYWIQARgCMgQIABATMgQIABATMgQIABATMgQIABATMggIABAWEB
4QEzIICAAQFhAeEBMyCAgAEBYQHhATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATOgQIABBHUMU-WMU-
YN95aABwAngAgAGCAYgBggGSAQMwLjGYAQCgAQKgAQGqAQdnd3Mtd2l6yAEEwAEB&sclient=psy-ab>

Sawtooth represents state for all transaction families in a single instance of a Radix
Merkle Tree on each validator. The process of block validation on each validator
ensures that the same transactions result in the same state transitions and that the
resulting data is the same for all participants in the network.

The state is split into namespaces which allow flexibility for transaction family
authors to define, share, and reuse global state data between transaction processors.

 116_004 Ethereum-2.1 Page 10

https://sawtooth.hyperledger.org/docs/core/releases/0.8/architecture/global_state.html
https://www.google.com/search?client=opera&hs=6S&biw=1240&bih=579&ei=dSkEYNCOD9a73APemJjACw&q=byzantine+consensus+blockchain&oq=Byzantine+consensus&gs_lcp=CgZwc3ktYWIQARgCMgQIABATMgQIABATMgQIABATMgQIABATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATOgQIABBHUMU-WMU-YN95aABwAngAgAGCAYgBggGSAQMwLjGYAQCgAQKgAQGqAQdnd3Mtd2l6yAEEwAEB&sclient=psy-ab
https://www.google.com/search?client=opera&hs=6S&biw=1240&bih=579&ei=dSkEYNCOD9a73APemJjACw&q=byzantine+consensus+blockchain&oq=Byzantine+consensus&gs_lcp=CgZwc3ktYWIQARgCMgQIABATMgQIABATMgQIABATMgQIABATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATOgQIABBHUMU-WMU-YN95aABwAngAgAGCAYgBggGSAQMwLjGYAQCgAQKgAQGqAQdnd3Mtd2l6yAEEwAEB&sclient=psy-ab
https://www.google.com/search?client=opera&hs=6S&biw=1240&bih=579&ei=dSkEYNCOD9a73APemJjACw&q=byzantine+consensus+blockchain&oq=Byzantine+consensus&gs_lcp=CgZwc3ktYWIQARgCMgQIABATMgQIABATMgQIABATMgQIABATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATOgQIABBHUMU-WMU-YN95aABwAngAgAGCAYgBggGSAQMwLjGYAQCgAQKgAQGqAQdnd3Mtd2l6yAEEwAEB&sclient=psy-ab
https://www.google.com/search?client=opera&hs=6S&biw=1240&bih=579&ei=dSkEYNCOD9a73APemJjACw&q=byzantine+consensus+blockchain&oq=Byzantine+consensus&gs_lcp=CgZwc3ktYWIQARgCMgQIABATMgQIABATMgQIABATMgQIABATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATMggIABAWEB4QEzIICAAQFhAeEBMyCAgAEBYQHhATOgQIABBHUMU-WMU-YN95aABwAngAgAGCAYgBggGSAQMwLjGYAQCgAQKgAQGqAQdnd3Mtd2l6yAEEwAEB&sclient=psy-ab

Radix Addresses

The tree is an addressable Radix tree because addresses uniquely identify the paths to leaf
nodes in the tree where information is stored. An address is a hex-encoded 70 character
string representing 35 bytes. In the tree implementation, each byte is a Radix path segment
which identifies the next node in the path to the leaf containing the data associated with the
address. The address format contains a 3 byte (6 hex character) namespace prefix which
provides 224 (16,777,216) possible different namespaces in a given instance of Sawtooth.
The remaining 32 bytes (64 hex characters) are encoded based on the specifications of the
designer of the namespace, and may include schemes for subdividing further, distinguising
object types, and mapping domain-specific unique identifiers into portions of the address.
For more information about general concepts, see the Radix page on wikipedia.

A PATRICIA trie is a special variant of the radix 2 (binary) trie, in which rather than explicitly
store every bit of every key, the nodes store only the position of the first bit which
differentiates two sub-trees. During traversal the algorithm examines the indexed bit of the
search key and chooses the left or right sub-tree as appropriate. Notable features of the
PATRICIA trie include that the trie only requires one node to be inserted for every unique

 116_004 Ethereum-2.1 Page 11

https://en.wikipedia.org/wiki/Radix_tree
https://en.wikipedia.org/wiki/Radix_tree#cite_note-10

Working with Ethereum protocol is interesting. Every day, I have the opportunity to learn something new (and
also relearn things that I thought that I already knew). If you spot anything in this post that isn't quite clear (or
even something that is clearly wrong), please comment and I'll try to address it as soon as possible. After all,
we don't want to propagate misconceptions about the protocol.

References
Merkle Trees•
Merkle Proofs•
How data is stored in Ethereum?•
Diving into Ethereum's world state•
How does Ethereum work anyway?•
A (Practical) Walkthrough of Smart Contract Storage•

PATRICIA trie include that the trie only requires one node to be inserted for every unique
key stored, making PATRICIA much more compact than a standard binary trie. Also, since
the actual keys are no longer explicitly stored it is necessary to perform one full key
comparison on the indexed record in order to confirm a match. In this respect PATRICIA
bears a certain resemblance to indexing using a hash table.[10]

 116_004 Ethereum-2.1 Page 12

https://brilliant.org/wiki/merkle-tree/
https://medium.com/crypto-0-nite/merkle-proofs-explained-6dd429623dc5
https://hackernoon.com/getting-deep-into-ethereum-how-data-is-stored-in-ethereum-e3f669d96033
https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369
https://medium.com/coinmonks/a-practical-walkthrough-smart-contract-storage-d3383360ea1b
https://en.wikipedia.org/wiki/Radix_tree#cite_note-10

•
Inside an Ethereum transaction•
Life Cycle of an Ethereum Transaction•
Ethereum Design Rationale•

 116_004 Ethereum-2.1 Page 13

https://medium.com/@codetractio/inside-an-ethereum-transaction-fa94ffca912f
https://medium.com/blockchannel/life-cycle-of-an-ethereum-transaction-e5c66bae0f6e
https://github.com/ethereum/wiki/wiki/Design-Rationale

